Smart Buildings

Beyond COVID-19 to the Vast Benefits of Cleaner Workplace Air

The air quality of our indoor spaces has seen renewed interest in the past 18-months as a strong relationship emerges between the quality or flow of air and the spread of coronavirus. In the rush to get workers back into their physical workplaces, we have seen a surge of office buildings improving and reconfiguring their HVAC systems to better protect employees from COVID, even monitoring systems that provide building occupants a real-time view of air quality throughout the building. Better air quality has not only become beneficial for workplaces during the pandemic, however, there are also many other reasons to improve HVAC systems. COVID has simply made better air quality necessary for companies, rather than a nice-to-have.

A June survey by Honeywell questioned 1,554 facility managers around the world on the impact of COVID-19, with 75% confirming that the pandemic has caused them to permanently rethink how their buildings operate. Within the results, nearly 60% said they are more likely to invest in indoor air quality optimization technology. Another study compiled by 39 scientists from 14 countries and published in the journal ‘Science’ has demanded universal recognition that infections can be prevented by improving air ventilation systems in buildings. While a survey of 436 human resources managers in the US, conducted by Pollfish on behalf of Omni CleanAir, found that nearly every business surveyed took steps to improve air quality during the pandemic.

The Pollfish – Omni CleanAir survey found that 73% of surveyed organizations had upgraded existing HVAC systems to support improved filtration, namely the introduction of MERV13 filtration, while 63% reported the installation of medical-grade filtration such as HEPA into their central HVAC systems. A further half of respondents said their organizations had introduced portable HEPA filtration machines, while 42% had deployed ultraviolet germicidal irradiation (UVGI) and 38% had deployed air ionization technologies. After years of relatively minimal improvements to air quality in workplaces, the pandemic has driven buildings to follow official guidance on best practice for clean air.

According to ASHRAE, using combinations of filters and air cleaners that achieve MERV 13 or better levels of performance for air recirculated by HVAC systems is a core recommendation for reducing exposure to airborne infectious diseases. Meanwhile, public health information during the pandemic has made a clear distinction between the rate of transmission between indoor and outdoor air-quality environments. This has prompted commercial building designers to bring more of the outdoor air into the building through ventilation systems and new architectural design approaches.

“Dozens of the world’s top experts in how diseases spread have called for big improvements to the air in buildings and there is now a recognition by the WHO and the CDC that coronavirus can spread through the air. However, cleaner air won’t just fight the COVID pandemic, it will also minimize the risk of catching flu and other respiratory infections that cost the US alone more than $50 billion a year,” said Phillip Dowds, the founder and director of OKTO. “Businesses are annually being hit with the costs associated with sick leave and loss of productivity due to poor air quality and ventilation systems, viruses, flu symptoms, asthma, chest infections etc.”

Various studies have long proven a link between air quality and absenteeism. A 2002 study by Milton DK. et al., compared employee absenteeism in offices with varying air quality conditions. They found that short term sick leave was 35% lower in offices ventilated by an outdoor air supply rate of 24 l/s compared to buildings with rates of 12 l/s. This staggering statistic may support Dowds “$50 billion a year” in losses claim and suggests that companies should have been investing much more significantly in air quality technology long before the pandemic. Employees not being able to work due to sickness is a huge drain on companies but workplace air quality is not just about reducing sickness either. 

Better air quality also improves the overall health, wellness, and comfort of employees, thereby increasing their ability to concentrate and making them more productive. Several studies have found that high levels of carbon dioxide (CO2), or low levels of oxygen, in offices make us drowsy, affecting our concentration and decision-making abilities. Traditional building regulations have brought about well-insulated office spaces, reducing temperature fluctuations but also reducing fresh air circulation. Typical outdoor CO2 concentrations hover around 380 parts per million (ppm), while within offices CO2 concentrations were found to be as high as several thousand ppm. All organizations desire greater employee productivity and, therefore, all companies should seek better air quality.

All companies also want to reduce their costs, and while capital investments in better HVAC systems can be expensive, the operational cost reductions from smarter HVAC usually pays off in the long run. Combined with sensors and analytics, HVAC systems can better understand and react to the actual use of spaces in buildings to find new efficiencies, namely by not heating, cooling, and ventilating unused areas of the building. A layer of artificial intelligence applied to HVAC control can go further by using prediction and advanced analytics to find even greater efficiencies as well as better integrating with other systems to meet overall building objectives.

“The quality of the air as a determinant of occupant health, wellbeing and satisfaction is steadily gaining greater recognition. Several of the more sophisticated offerings in this domain tie into building management and HVAC systems together, and are using AI to balance air quality, energy efficiency and comfort priorities and determine optimal control systems,” explains our recent AI in commercial buildings report. “Others integrate with predictive analytics solutions, providing improved insight into systems maintenance requirements. A number of the solutions also use occupancy data to help drive optimized ventilation and airflow conditions depending on current levels of occupation in a building.”

The COVID-19 pandemic has forced companies to invest in technology that can improve air quality in their workplaces, through regulation and public pressure to better protect employees. However, once the smoke clears on this global crisis, office buildings around the world will find their workers are more resilient to many kinds of sickness, reducing absenteeism, and more productive when they are at work, due to the cognitive benefits of cleaner air. Many of the smart technologies required to improve air quality will also drive cost reductions and open the door to other smart systems such as occupancy and space analytics. While challenging almost every business in the world, the COVID-19 pandemic can also breathe new life into the smart workplace.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Most Popular Articles

Smart Buildings

Does Technology Make Buildings More or Less Resilient?

Resilience is the ability to overcome future challenges, both the expected and the unexpected. The term has been used increasingly in the buildings industry in recent years, alongside other terms such as sustainability and continuity. However, while sustainability and continuity are focused on survival, the true goal of resilience is to thrive despite challenges. Resilience […]

Smart Buildings

Webinar: Tagging with AI to Enable Data-Driven Applications at Scale

Please join us on Tuesday 3rd August at 1700 CEST | 1600 BST | 1100 EDT | 0800 PDT for our 5th FREE Webinar in the 2021 Smart Buildings Series. Tagging with AI to Enable Data-Driven Applications at Scale. Memoori talks to US Startup Mapped about how they are using Artificial Intelligence to help existing buildings, which […]

Subscribe to the Newsletter & get all our Articles & Research Delivered Straight to your Inbox.

    1. Please enter a valid email

    2. Please enter your name

      Please enter company name

    3. By signing up you agree to our privacy policy