Smart Cities

Japan Tests Virtual Power Plants with Potential Capacity on Unprecedented Scales

In the aftermath of the 2011 Fukushima Daiichi nuclear accident, the Japanese government embarked upon the largest deregulation of any electricity market worldwide. Through their restructuring they not only want to push away from nuclear energy, but also to promote renewable energy and help modernize the Japanese electric grid by introducing competitive services and flexible resources. The frequency of earthquakes, and the tsunamis they often trigger, in the Japanese archipelago has been a key factor behind the decision to move away from hazardous nuclear power plants. However, creating the physical space for new generation capacity to make up the shortfall is also a problem in the densely populated Asia-Pacific nation. So instead of physical power plants, Japan is launching a number of virtual power plants projects that it hopes will be the answer to its unique electricity challenges. On the December 11th, last week, US based artificial intelligence-driven energy storage service provider Stem Inc, announced […]

Stay ahead of the pack

with the latest independent smart building research and thought leadership.

Have an account? Login

Subscribe Now for just $200 per year per user (just $17 USD per month) for Access to Quality Independent Smart Building Research & Analysis!

What Exactly Do you Get?

  • Access to Website Articles and Notes. Unlimited Access to the Library of over 1,700 Articles Spanning 10 Years.
  • 10% discount on ALL Memoori Research reports for Subscribers! So if you only buy ONE report you will get your subscription fee back!
  • Industry-leading Analysis Every Week, Direct to your Inbox.
  • AND Cancel at any time
Subscribe Now

In the aftermath of the 2011 Fukushima Daiichi nuclear accident, the Japanese government embarked upon the largest deregulation of any electricity market worldwide. Through their restructuring they not only want to push away from nuclear energy, but also to promote renewable energy and help modernize the Japanese electric grid by introducing competitive services and flexible resources.

The frequency of earthquakes, and the tsunamis they often trigger, in the Japanese archipelago has been a key factor behind the decision to move away from hazardous nuclear power plants. However, creating the physical space for new generation capacity to make up the shortfall is also a problem in the densely populated Asia-Pacific nation. So instead of physical power plants, Japan is launching a number of virtual power plants projects that it hopes will be the answer to its unique electricity challenges.

On the December 11th, last week, US based artificial intelligence-driven energy storage service provider Stem Inc, announced a partnership with large Japanese sogo shosha (general trading conglomerate) Mitsui & Co. Endorsed by the Ministry of Energy, Trade and Infrastructure (METI), the pair intends to build one of the first aggregated fleets of industrial customer-sited energy storage operating in Japan.

This virtual power plant will initially be deployed across more than 750 kWh at multiple sites to form a flexible and fast-responding distributed resource. This pilot will help guide Japan’s plans to develop aggregated demand response resources as flexible capacity, in order to manage the variability from increased renewable energy resources on the grid. John Carrington, CEO of Stem, claiming at the launch that, “Japan is poised to dramatically scale its demand response market.”

For this deployment, Stem will operate multiple sites outside of Tokyo for Mitsui and host customers, by applying its Athena artificial intelligence software. The first system is located at the Shinwa Kankyo Recycling Center in Yoshikawa City, Saitama Prefecture, in the densely populated and power hungry service territory of the Tokyo Electric Power Company (TEPCO).

Two days later, on December 13th, TEPCO announced another project with significant energy storage and potential. In partnership with Japanese automotive giant Nissan, TEPCO will launch a study in Japan to determine how electric vehicles (EVs) can help stabilize power grid demand in a similar way to virtual power plants.

“Renewable energy will be more widely used in the future as part of the shift toward a low-carbon society. To use renewable energy in a stable and effective manner, virtual power plants are being developed to integrate and control dispersed energy resources on the customer side,” said a Nissan spokesperson. “Electric vehicles have the potential to be one of these virtual power resources, through the control of charging and discharging in cooperation with grid operators.”

The two companies have begun a pilot study using a group of TEPCO employees driving the Nissan e-NV200 electrical commercial van and Nissan employees using the 100% electric Nissan LEAF. Both vehicles make use of Nissan’s telematics system, a service that lets electric vehicle owners remotely monitor their car’s condition and control charging via a smartphone app.

TEPCO will notify project participants of time periods when power grid demand is low, and offer incentives to participants who charge their EV during that time. The project will examine the degree to which vehicle owners respond by changing their charging times, helping smooth out power demand fluctuations. The information collected will help determine the most effective use of electric cars to help stabilize grid demand.

The project builds upon research by Dr Kotub Uddin, with colleagues from the Energy and Electrical Systems group of University of Warwick’s manufacturing department (WMG), in partnership with Jaguar Land Rover in the UK. Covered in our June 2017 article: New Vehicle-to-Grid Research Shows Cars Can Power Buildings.

“[They] demonstrated that vehicle-to-grid (V2G) technology can be intelligently utilised to take enough energy from idle EV batteries to be pumped into the grid and power buildings, all without damaging the [EV] batteries,” we wrote. “This new research into the potential of V2G conclusively showed that it could even improve vehicle battery life by around 10% over a year.”

It seems inevitable that EVs will dominate our automotive future, and if so they represent energy storage capacity on an unprecedented scale. There are almost 70 million vehicles currently registered in Japan for example, and while it would take some time for EV adoption to reach significant levels, the numbers needed for a VPP are not that high.

It take just 300,000 EV batteries within a virtual power plant in order to supply as much electricity as a nuclear reactor does. The power from the VPP system could be released instantly to meet demand and would offer dynamic flexibility on a scale never seen before.

“Japan is known for creating futuristic technologies that benefit consumers and are leading to a sustainable society,” said a Mitsui & Co. spokesperson during the Stem announcement. If these trials develop as planned, Japan may soon be showcasing the true power of virtual power plants and energy storage to the world.

[contact-form-7 id="3204" title="memoori-newsletter"]

Most Popular Articles

Distributed Energy Management DERMS
Energy

The Distributed Energy Management Startup Landscape

Building Energy Management is a broad category encompassing energy management software and hardware, energy efficiency services and sustainability and carbon management solutions for buildings. It also includes the technologies involved in creating grid-interactive buildings, such as demand response, virtual power plants, distributed energy management and behind-the-meter energy storage solutions. Within that space, a software category […]

Assa Abloy Strategy Mapping Acquisitions
Security

Mapping the Tech Strategy of Assa Abloy through Acquisitions in Access Control & Identification Solutions

This Research Note examines the technology strategy of Assa Abloy, the global vendor in the access solutions space. We have mapped M&A activity in physical security, access control and identification solutions by categorizing the various acquisitions by technology over the last 2 years (January 2022 to date). The strategy presentation slide (shown below) at the […]

New York Buildings Energy Performance
Energy

Building Energy Performance Codes Pushing Decarbonization Efforts

On Tuesday September 12th, last week, New York City (NYC) Mayor Eric Adams launched “Getting 97 Done,” a new strategy to cut harmful carbon emissions from the city’s many large buildings as obliged under Local Law 97 of 2019. The plan aims to deliver the goals outlined in the broader “PlaNYC: Getting Sustainability Done,” New […]

Subscribe to the Newsletter & get all our Articles & Research Delivered Straight to your Inbox.

Please enter a valid email

Please enter your name

Please enter company name

By signing up you agree to our privacy policy